
-. ~AD-A236 923 ___

REPRT OCU E II 11111 ~j ~l q Fotrn Approved
Public teporling burde~n lot ths collectionf pinformation is estimatedt to averz mng esting data sorces ga3Itiiirg and
manininng thedaa aneeded, and completing andtreviewing 'hecollection ofinformation Send comments regarding thisburden estmat or anyother aspe ctottIhis colerlonotnomaon incwlung
suggestion.stor reducing tis burden, to Washington Headquarters Services, Directorate for Information Operations and Heports 121 SJefferson Davis Highway Suite t1204, Arlington VA 22202 4 302
and tolhncOtice ot Manactement and Budget Paoerwork ReductionProject(0704-0188) Washington DC 20503

1AG'ENC'Y JSE ONLY (Leave biank) 2 REPORT DATE 3 REPORT TYPE AND DATES CDVERED

May 1991Professional Palimr

4 TITE AN SUBITLE5 FUNDING NUMBERS

(;EOMETIRI('(,CHARACT'IERIZATION OF EIGEN VALUJES OF COVARIANCE MATRIX PR: SXB2
FOR TWO-SOURCE ARRAY PROCESSING .W'U: ICS,-XB200

6 AUTHOR(S) PE: 0602111 N

S. 1. (Chou

7 PERFORMING ORGANIZATION3 NAME(S) AND AtTDRESS)ES) 8 PERFORMING ORGANiZA I ION
REPORT NUMBER

Naval Ocean Systems Center *~ ,

San Diego, CA 92152-5000 .

r' -no/

B SPONSORING/MONiTORiNG AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING
AGENCY REPORT NIMER.

Naval Ocean Systems Center ..--

Block Programs
San Diego, CA 92 152-5000

11 SUPPLEMENTARY NOTES

t2a DiSTRIBUTiON/AVAiLABiLEIY STATEMENT 12b DISTRIBUTION 006e'4

Approved for public release; distribution is unlimited.

13 ABSTRACT (Maximum 200 words)

For a two-source array processing scenario, normalized eigenvalues' expressions X, and X2 are reduced to forms
depending only on a real triplet: phase-dependent, variable E, phase-independent variable -n, and power ratio !Ll -q~,r)
is confined to an isosceles-like region. We characterize nT2

" this isosceles-like region and the many-to-one mapping from the Cartesian product of the temporal an, spatial
correlation unit-disks onto this region,

" the behavior of the eigenvalues and their ratio as functions of the real triplet with respect to array processing,
a n(

* a characterization of Speiser's eigenvalue bounds specialized to the two source scenario.

Published in ICASSP91 Proceedings, 14 May 1991.

14 5J.
T

TTPMS 15 NUMBER OF PAGES

tracker/coorrelator ultra widehand radar
dJim target HFDF 16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

UJNCLASSIFIED) UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01 280 55 Standard form X,\9



GEOMETRIC CHARACTERIZATION OF EIGENVALUES OF
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Abstract unit-disk through

Foc a two-source array processing scenario, normalized i - (1 - 1I-)l - pl2),
eigcnvalues' expressions A1 and A2 are reduced to forms de-
pending only on a real triplet: phase-dependent variable , = Re(pq*) = Ipll cos(argp- argO).

phase-independent varialde YI, and power ratio 5 . ( ,y;) is U1sing our notation, the normalized eigenvalues assume the
confined to an isosceles-like region. We characterize following form

* this isosceles-like region and the many-to-one mapping ( A ) 1 [7r_ +]
from the Cartesian product of the temporal and spatial A2 2 - + (
correlation unit-disks onto this region, [

" the behavior of the eigenvalues and their ratio as func- x41:t -(()
tions of the real triplet with respect to array processing, + I + 12)2 ]
and

" a characterization of Speiser's eigenvalue bounds spe- While the discussions of eigcnvalues in this report are

cialized to the two source scenario, applicable to generic steering vectors, we call 71 the phase-
independent variable and s the phase-dependent variable for

1. Introduction convenience even though such names were motivated by the

special case of plane waves impinging onto pairwise sym-

The eigenvalues play a central role in parametric sig- metric arrays.
nal subspace fitting methods, in many versions of non-
parametric subspace beamforming, and in applying the 2. An Isosceles Right-Triangle-Like Region
rank-reduction principle to subspace array processing. The puiase-imdependent variable Y depends only on thie

Very scanty discussion of the cigenvalume expressions not
restricted to the simple uncorrelated arrivals was given in [1] magnitude of p and 0. The phase-dependent variable de-

pends also on the angular positions ofp and 0. The mappingfor two-source array processing. The eigenvalies are sohi- fo h ope ar(, otera ar(,r)i ayt

tions of a quadratic equation but they depend on 6 real pa- f the complex pair (p, q) to the real pa tj) is many to
Sfrom I tIand t complex one. The range of this mapping is an isosceles right-triangle-rameters, i.e., wi ti rmtl spat.ialadtpolcope like region bounded on it.s left and right by two symmetric

correlations and 2 from the power levels of the arrivals. lke i b oi i lft and wbeo by a sig tae
Acompanion paper[2] contains minimum mathemat- parabolas, j7 = ( ± 1)2 , and down below by a straight base-

line, 71 = 0. We note the zero slope of each parabola where
ical development but concentrates on the overview of the it meets the straight line and the 90' angle that the two
problem, graphic display, physical interpretation of results. itrmeets tesit ea n the 9t

This paper provides some details on which the companion Wra ll seeter therapape isbasd ad ten harcterze peier' cienvlue We will see later that among the three parameters
paper is based and then characterize Speiser's eigenvalue ( ,, r/7r 2 ) appearing in the eigenvalues' expressions, Y7 is
bounds[3] specialized to the two source scenario. the most important one.

We give special treatment for equal power arrivals he- 'The two cigenvalues are equal if and only if what is in-
cause of its many unique characteristics and its importance side the radical of the cigenvalue equation vanishes. It can

in real applications. be shown that for this to be true we must have rl/7r2 = I.

The analytical trcatment begins by reviewing the ex- and that, mid y mist, be oi the left parabola of the
i)re~sionis of thme noise-free eige:nvalues of thme luadIratic chair-presiof,;of he oie-ree igcvales f he uadati chr-isosceles-like region. The common eigenvalue value thley
acteristic equations of the non-Ilermitian product of the share is

temporal and spatial correlation matrix given in Hludson's A ±(,(I + )2) (1 +)
text(l, pp. 52-55]. The cigenvalues are normalized with re-
spect to the product of the number of sensors ald the sen- 3. Characterizing Eienvalues and their
sor level power of the weaker source 7r2 , i.e., 71 > 7r2. The Ratio
normalized large and small cigenvalues expressions A, and
A2 arc re(iced to forms depending only oi the real triplet We characterize the behavior of the cigenvalues and

17, 5-). Hfere, 1.1 is the power ratio between the strong their ratio - as functions of the real triplet (o, 17, 1). It is

to wea sources at the sensor level. The real pair ( , r?) are useful to discuss the expressions for the eigenvalue and their

defined in terms of the normalized temporal and spatial co- ratio -A' for the special cases at the apex, the baseline, and

efficients p and 0 respectively with each constrained to a the vertical axis. But instead, we characterize the special

To appear in ICASSP '91 91-01713
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case of equal-strength arrivals and then the general case will Eigenvalhie' Ratio
he J.ouchcd ipon only lightly at the end. We ieed to kniow (lie slhape of the contoirs of (lie eigen-

Eigenvalues value ratio - 1, i.e.,
The small cigenvaluie will be seen to diminish qialita-

tively and quantitat.ively for two-arrival scenarios increas- A, I-

ingly stressed with high temporal and/or spatial correla- A2  1-

tions. The special case of equal strength ! = 6 dB arrivals, where - assumes the expression from equation 1. This is
also important in low-angle radar tracking, shares many rich
structures of general 1. It has several additional unique equivalent to

features for signal eige ivahes' ratio i-t imIportant in array 4(1)1 _ 4

processing. (1+ I + ( 2 ( 1)2

The special case of equal strength -a = 0 dB arrivals I
shares the following common features of general power For the special case of equal strength .. = 0 dfB,
ratios: straight line contours for constant eigenval1ie A's, by- the coitoirs of the eigcvalie ratio - = I form a onc-

perbiic A slices for constant phase-independent variable r1s, I I

and parabolic A slices for constant phase-dependent variable parameter family of parabolas having their vertices cot-

i's. However, we caution that unless special effort is madl cated at (, /) (-1,0), i.e., at tle lower left corner of the
isosceles-like triangle and their common tangent the baseline

in plotting results, the two displayed surfaces or curves may is family of parb o ine the eb n

not always meet at the supposed places. This is because the 0
ary of the isosceles-like triangle and the baseline. Because

boundary curves defining araolscontours of the eigenval ratio A = I pass through
general, do not pass through the grid points used in the the contor of tile ioe-

and plne.the lower left corner of the isosceles-like triangle, this cor-
and 77 plane.IA

As ,7 approaches 0, tihe small eigenvaluc A2 and the ner is a point of discontinilty for the eigenvaltie ratio
An approaches , ten e all eig-nv and 1,resctey for the special case of equal strength - 0 dlB. For ex-

igenvalue ratio tend towar(le envaes ar equal over the left parabolic
Similarly, as q approaches 0 for t(! eqipower case, 5 = 0

imal boundary of (lie isosceles rigt-triangle-like region. Further-
d11, both the upper A, and lower A hyperbolas tend toward
their asymptotes intersecting at -oo dl. more, thle two equally dominant eigenvaliies go down to zero

ne ca nsec at ive -ooue iu(1ia3i.ul of the jointly so thai. the condition imiiiwr stays ats unity through-
One can tise plots to give some indication of the o- out. 'I hat is, the condition numbers are the lowest possible

dependent nature of the eigenvalues. But it is possible to there. However, both eigenvalues tend to zero as r/ tends
analyze the same phenomenon for the most important area. to zero, i.e., the baseline of the region. The limit of
As the Y7 = 0 baseline is where A2 = 0, we have more quianti- ao

approaching from the baseline of the isosceles region is oo,tative information about thle tdependent or independent while that approaching from tlie left boundary curve of the
nature of A2 in this neighborhood for given values of i
because of the following characterization. For given an isosceles region is 0.

1, as for all other values, the stress of a direction- For the eqii-powered case, the destructive interference
ihi scenario point is at the left apex of the isosceles region. Both

finding scenario is hight when tebaseline q is approached. cigenvalues are zero and the eigenvalue ratio __ at this point
We are interested in the local behavior at the stressful re- Ap

gion about r= 0. In this region, the large eigenvalue A is of the 0/0 form. This point corresponds to the total can-
cellation of signals at the sensor element level. The total

will not change much in terms of its order of magnitude. cancellation happens not only at the center of the array but

This is not the case for the small eigenvalue A2 , as it is the at every sensor. The two steering vectors coincide and the
difference of two nearly equal numbers. The local first-order temporal waveforms negate each other completely. Con-
approximations to A, and A2 near 77 = 0 are therefore sider two strong sources behaving this way. As the power is

A , -) Az A(, 0) = 2(1 +) measured by turning off one source at a time, so the equal
power are considered as high and CR1,B and asymptotic

r( results apply when noise is taken into consideration.
2(1 + t) We focus attention to the condition number's behavior

Near 7 = 0 and at the three particular C values, we have for over the vertical axis t = 0 of the isosceles region. For the
special ctuie of equal silrength - = 0 dl, there is an extra

6 dB for signal eigenvalues' ratio ,J. over the vertical axis

A2(-1, 11) : oor7, A2(0, Y7) . r  A2 (1,77) Z C = 0 accounting for he presence o?an infinite slope of A's
2 4 with respect to 77 at the apex for the equal-power arrival

This indicate the significant c-dependence of A2. case. This is reflected in the following two approximations.

Near Y7 0 and for large a, we have instead When f, > 1, we first, approximate the radical expres-
sion as

A A ( ,0) r + I + 2 , 2(),1 4,

A2 ( , '7) ; 7, iFor the general case, i.e., L > 1, this common vertex is moved to
W2i.e., essentially t -indepndent, the left from (-1,0) and is now outside of the isosceles-like region.



Hinit tl! ritio is givei aipprtxiiat.ely by Iiuld aT(hI) is the i-th lrgest. cugu'uv'hi of lu Iler uiiiaut
matrix %P, and Ai = al(I'4k). It is easy to see that a2(%P)

A,- 1 -_i 1± 101. This corresponds to Ai for tie special case = 0, i.e.,

A - - =-- -- - I Z 77. at the vertical axis, with P being identity, the temporally
A i2 tncorrelated equial-powered arrival case. We also have

That means the stress from Yj and ' is multiplicative (di- ., l r ( 4()(1 - p12)
visive) in the direct scale. In d13 scale, this is additive, i.e., ( ) 2 + 1) 1 + - (--______-_)-
when 5- > 10 d11, we have

7" This corresponds to Ai for the special case = 0, i.e., at the
-,(in dl) (r)(in dll) - 1(inl vertical axis, wit h 'I being ihntity, the spatially orthogonal
A2  7r2 arrival case.

When - ;- 1, we have Given these algebraic expressions, we now interpret
X their physical significance. The three main sources for the

A, 1 + vr/t _ (1 + VTF-Y) 2  2 - 7 + 2 /'l-j 4 signal eigenvalue spread or causes for small signal eigenval-

A2  - -. ties are the high spatial correlation 0 (tue to narrow spatial
separation between two arrivals, the high temporal correla-

We used Y7 < 1 in the last step. When 11 5 0 (111 and Y1 is tion p because of multipaths, and the high strength contrast
less than 0.10 (or -10 d1l), we have 5- We note that 0 appears in %P, p and in P. Speiser's

A, eigenvaluie bounds for the product of two matrices tell us

(in 03) d -rq(in dB) + (3. that if we know the eigenvalues of TI and P, then we can
A2  bound the eigenvalues, A2 = 02(PP), of the product matrix.

The variation of signal eigenvalue ratio A-1 across the Stated loosely, if we know the partial stress from spatial cor-

phase-dependent variable c is not significant. For the special relation alone and that from temporal correlation together

case of equal strength E-= 0 dB, there is a 4-time or (c with the power contrast, we can bound the joint stress from
f l tall of the above combined sources. From the above expres-

increase on the eig2nvalue ratio f sions, we know that the partial stresses o,('I() and cr2(P)
power arrivals both temporally and spatially from changing depend on 2 and p constrained on the two unit-disks only

the phase of the source correlation or the angle difference thro n t an p cs ine d the ngoly
through their riuigiihides, i.e., radii, but nOL the anguilar

between the two unit-disk vectors from 900 to 0. positions. Yet the combined stresses A2 = or(P) depend
As power ratio increases from unit value, tile va- also on the relative phasor positions. Recognizing the na-

ation of the large eigenvalue A1 is essentially along the di- ture of the many-to-one mapping from (p, k) to ( , Y7) which
rection of the horizontal phase-dependent variable . The appeared in the eigenvalue formulas, we note that the rela-
smaller eigenvalue A2 is independent of both the horizon- tive phasor positions appeared only in the phase-dependent
tal phase-dependent variable and E-. near the baseline variable €.
for large 5- but is a strong function o? the vertical phase-X 3For given Ipl and 101, we have Y7= ( 1 012)(1 _ Ipj)
independent variable 7. The effect of L' is essentially only

ftyea ig uwiint and , - Pl- It is of interest to see whether Speiser's
felt by the large eigenw e which is not sensitive to whet .her upyer and lower bounds for A2 coincide with
the scenario's ( , 77) coordinate is close to the baseline, i.e., A2(-Ip1II1, (1 - 101)(I - p12)) and
whether the arrivals are correlated or close to each other as A2(P1I01, ( _ 101)(I _ p12)). We also like to know whether
far as its order of magnitude is concerned. these bounds are tight or loose as the scenario points range

We have used these results for assessment of scenarios over the isosceles region for the equiipowered arrival .!~ =1

in [4] from which this paper and [2] are excerpted. case and te large power-ratio case. 3

4. Specializing Speiser's Eigenvalue Bounds For the Special Equipower CGse ' - 1

to Two Sources For _ 1, Speiser's exprr son states that

As we have tile exact expressions of the eigenvalues for (1 - ]p])(1 - I) !5 A2

the two-source scenario, we can examine quantitatively some < min [(1 + I0)(I - IpD, (1 - 101)(1 + IP)]
general multisource results by specializing them to this case. (l - IPII) - I 1: - i11 I.
For example, we consider the singular value bounds derived
by Speiser and Arnold[3] for the product of two square ma- These bounds have exactly the same expressions for A2

trices. Specialized to the two-source scenario and in terms at the end points of the permissible a-interval between

of eigenvalues in our context, his expression can be written (-Ip110l,(1 - 1'2)(1 -Ip1 2)) and (Ipllol, (1 -I12)(1 - p1l))
as when .1 = I as shown in the following.

For a given ;7 value and - 1, as u€ varies from the
01 (P)o2(qI) < A2 < mi [ (P)a (',),((P)ur(I)] , left edge of tne permissible i-interval to the midpoint and

where then to the right edge, A2 decreases from

A2(-IpIIO, (1 - 012)(1 - Ip12))

p1 = ( - IpI1du) -. .. .- II -
Al. P"0 = 01 - Ip111) - 11lIl- 1011,



to is iiich simpijler to browse Ihe hylprbolic slice plots to vi-
sualize the best non-explicitly -dependent bounds one can

A2(0, (1 - k12 )(1 - p12)) 1 - ,/1 - (1 - 1I1)(i - pl2) possibly have than to analyze the particular bounds derived
by Speiser. Ir ,m our early characterization of the A sur-

to faces, we know Ilhat. t.]he depenhiice of As on becomes

A,( lpl k,(1- 1012)(1 - ipl2)) more insignificant as _ gets large. We expect that such
=-independent bounds perform better in this region. Natu-

= (1 + Il4I) - /(l + IpllI)2 - (1 - I )(1 - IpI- ) rally we must bear in mind that the original form of these
= (1 + Ip11)1) - (Il + 1I1) = (1 - I)(1 - p) bounds are applicable to the general niiiltisource arrival sce-

nairio ad Ihey anity erve some useful purpose tlere.
So for 1 1, Speiser's two bouids for the equipower

case can be identified as the eigenvalue values at the 5. Conclusion
two extreme ends of the permissible phase-dependent vari-
able c-interval. This ,-interval is on the constant phase- The main contribution of this work is a manageable
independent qj horizontal line of the isosceles region with presentation of a compact map showing the three functions,
all expressions calculated from tile magnitudes of p and 0 At, A2 , and I, over all possible scenarios. This enables one
only. For given 7, the permissible -interval attains its maxi- to see the relative positions among different scenarios. We
mum width when the -interval extends from the left- to the also present some easy-to-remembcr formulas that enable
right-bouridary parabola. The length of such maximum - one to exercise back-of-envelope assessment of scenarios.
interval increases with decreasing q), i.e., when the baseline Ve also characterize Speiser's eigenvalue bounds spe-
is approached. The bounds for the small eigenvalue may cialized to the two source scenario. These bound expressions
be loose when there is considerable variation of the order involve only the absolute magnitude of the two phasors on

of magnitude of the small eigenvalue along the maxinmum the two unit disks, i.e., only (lhe radius but not file argument

-interval. of the phasors. Interestingly enough, his two bounds for the

For the General Power Ratio 5- Case equi-power case can be identified as the eigenvalue values
Fr' xct the two extreme ends of the permissible phase-dependentFor the general _ case, Speiser's expression can be i

similarly arranged as o.0A 6am variable C-interval on the constant phase-independent 7 hor-izontal line of the isosceles region with all expressions cal-
-P culated from the magnitudes of p and 0 only. For given Y7,(1 01 + 1) 1 11-) < A2  the permissible C-interval attains its maximum width when

1T2 1)2 the C-interval extends from the left to the right boundary

I 7ri 4(l)(1 - jp12) parabola. Thle lengthl of such maximum -interval increases
- -±+ 1) 1- j 1- - with decreasing )7, i.e., when the baseline is approached. The

-b I1ounds for the smnall eigenvalue may be loose when there is

[ / 4(i)(1_1p]12 ) ) considerable variation in the order of magnitude of the small
I14)1- 1 - (+1)2 5. eigenvalue in the phase-dependent variable . For large 5-

the smaller eigenvalue A2 becomes more independent of thie

Note these bouind expressions involve only the alsolte horizontal phase-dependent variable , the bounds will get

magnitude of the two phasors on the two unit-disks, i.e., tighter. That is, there is less information loss by neglecting

only the radius but not the argument of the phasors. They the phlase-dependent variable C.

are not explicitly dependent on the other parameter
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